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Retrograde waves in tropical cyclone inner-core

By CHANH KIEU*, Department of Geological Sciences, Indiana University, Bloomington, IN, USA

(Manuscript received 23 February 2016; in final form 21 September 2016)

ABSTRACT

This study presents an extension of Kelvin’s vortex wave model for the inner-core region of tropical cyclone-like

vortices. By considering amore suitable approximation for tropical cyclones (TCs) for which the horizontal scale

of the TC inner-core is significantly larger than the TC vertical depth and taking into account the TC inherent

baroclinicity, it is shown that there exists a retrogradewavemode inwhich thewave propagation is opposite to the

mean tangential flow for the azimuthal wavenumber 1. While this result appears to be similar to that obtained in

Kelvin’s wave model, the retrograde mode in the TC-like vortices depends critically on the TC baroclinicity that

Kelvin’s model does not contain. Idealised simulations of a TC-like vortex using the full-physics Hurricane

Weather Research and Forecasting (HWRF) model indeed capture existence of the retrograde waves inside the

vortex inner-core at the high intensity limit. Despite the brief existence of this retrograde mode, the emergence of

retrograde waves in the HWRF simulations is of significance, because they may be related to subsequent wave

growth and formation of mesovortices that are often observed inside the core region of intense TCs.

Keywords: retrograde waves, hurricane, inner-core, tropical cyclones

1. Introduction

Tropical cyclones (TCs) have been well known to be an

inherent source of wave emittance. Due to the multi-scale

nature of TCs, the TC wave spectrum has a wide range of

scales spanning from convective-scale gravity waves to

much larger slow moving convective bands associated with

the coupling of gravity waves and vortex Rossby waves

(Shea and Gray, 1973; Willoughby, 1977, 1978; Willoughby

et al., 1984; Guinn and Schubert, 1993; Montgomery and

Kallenbach, 1997; Reasor and Montgomery, 2001; Chen

and Yau, 2003; Schecter and Montgomery, 2004). In the

framework of fluid vortices, the earliest complete treatment

of vortex waves was perhaps the seminal study by Kelvin

(1880), which contained thorough analyses of the wave

spectrum for an incompressible Rankine-like cylindrical

column. In particular, Kelvin obtained an intriguing class

of waves that propagate in an opposite direction with

respect to the mean flow for the azimuthal wavenumber

1 under the approximation of a large aspect ratio (i.e.

H/R�1, where R is the radius of maximum wind, and H

is the vertical scale of the vortex). For TC-like vortices,

such an assumption is nevertheless not reasonable since the

average scale of the TC radius of maximum wind (RMW) is

about 20�50 km at the mature stage, which is typically

larger than the vertical depth of the troposphere (�15 km).

Kelvin’s fluid vortex model also does not take into account

the baroclinicity of the TC vortices (i.e. the change of the

mean tangential wind with height), the highly stratified

density of the atmosphere and possible effects of the

Coriolis forcing.

Different extensions of Kelvin’s wave model for TCs have

been investigated in a number of studies. Within the TC

vortex framework, studies by Schecter and Montgomery

(2004, 2006) shed some light on how a dry TC-like vortex

responses to vertical wind shear and how vortex Rossby

waves could be radiated. If the radial gradient of potential

vorticity at a critical radius r* exceeds some negative

threshold, a critical layer will emerge and its absorption of

the vortex Rossby waves tends to suppress the radiative

instability. On the other hand, their numerical simulations

of a shallow-water vortex showed that the critical layer can

revive a damped vortex Rossby wave and its radiation field

after a brief period of decay if nonlinear feedback to the

critical layer are taken into consideration (Schecter and

Montgomery, 2006).

In this study, we wish to extend Kelvin’s wave model

specifically for the wave propagation within the TC inner-

core region. Unlike studies of the vortex Rossby waves

emanating from the eyewall and propagating outward that

depend critically on the negative radial gradient of vorticity

in the outer-core region (Montgomery and Kallenbach,

1997; Reasor and Montgomery, 2001; Schecter and
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Montgomery, 2004; Wang, 2010), this study focuses on

propagation of wave-like perturbations confined only near

the inner edge of the TC eyewall where potential mesoscale

vortices could develop and propagate adiabatically. Note

that in the outer-core region, TCs possess a different class of

wave propagation related to the negative radial gradient of

the absolute vorticity, the so-called vortex Rossby waves. In

contrast, the eye region of TC-like vortex is not characterised

by the monotonic decrease of the absolute vorticity with

radius as in the outer-core region (see, e.g. Yau et al., 2004),

and the existence of the vortex Rossby waves is thus not

ensured in the inner-core region.

Recent modelling and observational studies have often

captured some mesoscale features that develop near the

inner-edge of the TC eyewall, which may be ultimately

related to the deformation and breakdown of the eye shape

(Schubert et al., 1999; Montgomery et al., 2002; Kossin

and Schubert, 2004; Hendricks et al., 2012; Nguyen and

Molinari, 2014). These mesoscale features are mostly reali-

sed in terms of mesovortices that form through instability

associatedwith the strong vertical wind shear or convergence

of horizontal vorticity tubes near the planetary boundary

layer, and they tend to propagate to the right of the local

shear vector, somewhat similar to the development of mid-

latitude cyclonic supercells (Hogsett and Stewart, 2014).

Despite the unique dynamics of the TC inner-core region,

the propagation of the inner-core mesovortices has been so

far examinedmostly within a simple advective framework by

the mean azimuthal flow rather than studied from perspec-

tives of the wave dynamics. The main aim of this study is

therefore to investigate the propagation of different wave

modes confined within the inner-core region where it is

devoid of deep convection, but nonetheless possesses some

distinct dynamics due to the strong rotational flow that

increases almost linearly with radius. In particular, it would

be of interest to see under what conditions a retrograde wave

mode can be observed for TC-like vortex similar to what

derived from Kelvin’s model for a fluid column.

The rest of the paper is organised as follows. In the

next section, a general framework for extension of Kelvin’s

wave model will be presented. Section 3 discusses results

from numerical simulations with ultra-high horizontal

resolution, using the full physics Hurricane Weather

Research and Forecasting (HWRF) model. Some conclud-

ing remarks are given in the final section.

2. Anelastic extension of Kelvin’s model

2.1. General framework

Consider the following system of equations in the log-

pressure coordinate defined as z�log(p/pref) with respect

to a reference pressure pref, which constitute a minimum

three-dimensional model of atmospheric flows that can take

into account the stratification of the atmosphere under the

anelastic approximation (Wilhelmson and Ogura, 1972;

Willoughby, 1979; Durran, 1989):

ut þ uur þ
v

r
uk þ wuz �

v2

r
¼ �/r þ fvþ Fu (1)

vt þ uvr þ
v

r
vk þ wvz þ

uv

r
¼ � 1

r
/k � fuþ Fv (2)

wt þ uwr þ
v

r
wk þ wwz ¼ �/z þ bþ Fw (3)

1

r
ðurÞr þ

1

r
vk þ wz �

w

H
¼ 0 (4)

bt þ ubr þ
v

r
bk þ wN2 ¼ Q; (5)

where the anelastic approximation has been applied to the

momentum equations, u, v, w are the three wind compo-

nents in the (r,l,z) directions, b�g(T�Tref)/Tref with

Tref(z) reference temperature of undisturbed atmosphere,

/ is the geopotential, Fu,v,w are frictional forcing, f is

Coriolis parameter, and N2 is the Brunt-Vaisala frequency.

Under the null atmospheric stratification (i.e. N2�0 and

H0�), the above system conserves the total energy

E�r[(u2�v2�w2)/2�zb] in the absence of diabatic heat-

ing (Durran, 1989). However, in the presence of strong

atmospheric stratification and arbitrary diabatic heating

source, there is no explicit energy form that is conserved for

the system of eqs. (1�5).
Because our main focus here is on mesoscale perturba-

tions inside the TC eye where vertical motion is weak and

dominantly downward, thermodynamic processes are es-

sentially adiabatic such that the adiabatic approximation

Q:0 within the eye can be applied (except for possible

radiative cooling or microphysics/diffusion exchange near

the inner-edge of the TC eyewall). As long as the wave

propagation is limited within the TC eye at a short time

scale of several hours or less, such dry adiabatic assumption

is reasonable for examining propagation of vortex waves

(see, e.g. Schecter and Montgomery, 2004; Schecter, 2008).

More justification for this dry-vortex approximation will be

discussed further in the context of numerical simulations

with a full-physics model presented in Section 3.

Similar toKelvin’s andotherwavemodels, wewill also not

consider hereinafter impacts of frictional forcings nor the

upscale growth on vortex waves. The neglect of frictional

forcing is based on the fact that the frictional forcing

associated with turbulent eddies is most significant only

within the planetary boundary layer. Above the planetary

boundary layer, the turbulent-induced friction decreases

rapidly with height and becomes negligible in the free

atmosphere. This explains why the frictionless assumption

is commonly employed in many TC wave models (e.g.

MontgomeryandKallenbach, 1997;ReasorandMontgomery,

2 C. KIEU



2001;Holton, 2004; Schecter, 2008). This approximation is also

consistent with the construction of a mean balanced vortex

based on the gradient wind balance and the thermal wind

relationship as presented below.

As a starting point for the linearisation, we first define a

mean stationary baroclinic vortex in the free atmosphere

using the hydrostatic and the gradient balanced equations

for TCs (e.g. Hack and Schubert, 1986; Schecter and

Montgomery, 2004; Schubert et al., 2007). From the

hydrostatic equation

@ �Uðr; zÞ
@z

¼ �R �Tðr; zÞ; (6)

and the gradient wind balance

@ �Uðr; zÞ
@r

¼
�V

2ðr; zÞ
r

þ f �Vðr; zÞ; (7)

it is straightforward to obtain the thermal-wind constraint

for the balance vortex as follows:

@ �H

@r
¼ � g

RTref

@

@z
ð

�V
2

r
þ f �VÞ; (8)

where �H denotes the mean buoyancy structure (warm core)

of the mean balanced vortex. The key property of the

above mean vortex construction as compared to previous

wave models is that we allow �Vðr; zÞ to be a function of

z such that the intrinsic baroclinicity can be taken into

account. For the subsequent purpose of linearisation,

eqs. (6)�(8) suffice to define a complete structure for any

mean baroclinic vortex. For example, if one starts with a

warm core structure for which �Hðr; zÞ is given, the mean

geopotential �Uðr; zÞ will then follow from eq. (6) and the

mean tangential wind �Vðr; zÞ from eq. (7). Similarly, one

can always construct all other profiles of a balanced vortex

by starting with either �Vðr; zÞ, �Hðr; zÞ, or �Uðr; zÞ.
Linearise eqs. (1)�(5) around the above mean balanced

vortex as wðr; tÞ ¼ �wðr; z; tÞ þ w0ðr; tÞ, where c(r,t) is any

field variable, we have:

u0t þ
�V

r
u0k �

2 �V

r
v0 ¼ �/0r þ fv0 (9)

v0t þ
�V

r
v0k þ

@ �V

@r
u0 þ @

�V

@z
w0 þ

�V

r
u0 ¼ � 1

r
/0k � fu0 (10)

w0t þ
�V

r
w0k ¼ �/0z þ b0 (11)

1

r
ðru0Þr þ

1

r
v0k þ w0z �

w0

H
¼ 0 (12)

b0t þ
�V

r
b0k þ �Hru

0 þN2w0 ¼ 0: (13)

Provided that wave analyses are limited within a framework

of local linearisation, eqs. (9)�(13) are generally good ap-

proximations for an adiabatic vortex in the free atmosphere,

which is identical to the linearised system of equations

in Willoughby (1979). Under the hydrostatic assumption

(i.e. the left hand side (l.h.s) of eq. (11) is set to zero) and

the barotropic approximation (i.e. the mean balanced

vortex does not depend on z), we recover the wave model

by Schecter and Montgomery (2004), whereas setting

f�b?�0, H0� will recover Kelvin’s wave model for an

incompressible fluid column.

Consider the eigenmode solution of eqs. (9)�(13) in the

form:

u0ðr; k; z; tÞ ¼ UðrÞ exp½iðnkþmz� xtÞ� þ c:c
v0ðr; k; z; tÞ ¼ VðrÞ exp½iðnkþmz� xtÞ� þ c:c

w0ðr; k; z; tÞ ¼W ðrÞ exp½iðnkþmz� xtÞ� þ c:c
b0ðr; k; z; tÞ ¼ BðrÞ exp½iðnkþmz� xtÞ� þ c:c:
/0ðr; k; z; tÞ ¼ UðrÞ exp½iðnkþmz� xtÞ� þ c:c:

(14)

where the complex amplitudes U(r), V(r), W(r), B(r), F(r)

determine the amplitudes and phases of the eigenmode

solutions, and c.c denotes complex conjugate. Substituting

(14) into the linearised eqs. (9)�(13) results in

�ixU þ i�qnU � 2�qV ¼ � dU

dr
þ fV (15)

�ixV þ i�qnV þ �V rU þ �V zW þ �qU ¼ � in

r
U� fU (16)

�ixW þ i�qnW ¼ �imUþ B (17)

dU

dr
þU

r
þ in

r
V þ ðim� 1

H
ÞW ¼ 0 (18)

�ixBþ i�qnBþ �HrU þN2W ¼ 0; (19)

where �qðr; zÞ � �Vðr; zÞ=r. Define C � n�q� x, use of eqs.

(17) and (19) will give:

B ¼ iðN2W þ �HrUÞ
C

; (20)

and

W ¼ mC

N2 � C2
Uþ cU ;where c � �

�Hr

N2 � C2
: (21)

It is seen from eq. (21) that the existence of the atmos-

phere stratification puts a specific constraint on the eigen-

mode expansion for which N2�G2"0, because otherwise

the expansion is not valid. In the absence of the atmos-

pheric stratification N�0, H0�, this amounts to a

requirement that G"0, or x 6¼ �n�q. Next, we obtain from

eq. (15)

V ¼ iCU þ U0

X
where X � 2�qþ f : (22)

RETROGRADE WAVES IN TC INNER-CORE 3



To simplify our notation, let �g � @ �V
@r
þ �qþ f represent

the absolute vorticity of the mean vortex, substituting eqs.

(21)�(eq. 10a) into eq. (16) leads to

iCðiCU þ U0Þ
X

þ �gU þ @
�V

@z
ð mC

N2 � C2
Uþ cUÞ ¼ � inU

r
;

(23)

and so

U ¼ �i
nX

Lr
U� i

C

L
U0 � @

�V

@z

mCX

LðN2 � C2Þ
U; (24)

where L � X�g� C2 þ cX @ �V
@z
. Introduce next a new para-

meter S � � @ �V
@z

XC
LðN2�C2Þ that represents the coupling of the

atmospheric stratification and the vortex baroclicity, we

obtain an expression for the amplitude V from eq. (22) and

W from eq. (21) in terms of F as follows:

V ¼ nC

Lr
Uþ

�gþ c @
�V

@z

L
U0 þ i

mSC

X
U; and (25)

W ¼ mC

N2 � C2
Uþ cð�i

nX

Lr
U� i

C

L
U0 þmSUÞ: (26)

The fact that the mean vortex is baroclinic (i.e. �V is a

function of both r and z) implies that, strictly speaking,

U and V as given by (24) and (25) should be functions of

r and z as well, and so the eigenmode solution (14) with

amplitudes assumed to be pure functions of r is no longer

valid. It is observed, however, that the eigenmode expan-

sion (15)�(18) can still be applied even for more general

expansions for which the amplitudes U, V, W, B, F are

functions of both r and z. Provided that the variation of

these wave amplitudes with z is much slower than the

harmonic dependence (i.e. dAðzÞ=dz�mA where A(z)

denotes any wave amplitude U, V, W, B, F), the depen-

dence of the wave amplitudes on z can be neglected as

compared to the sinusoidal variations. Such weak depen-

dence of the wave amplitudes on z is not uncommon in

studies of the TC inner-core dynamics, where the barocli-

nicity of the mean balanced vortex is critical and serves as a

prescribed structure to the approximate Sawyer-Eliassen

equation (e.g. Hack and Schubert, 1986; Schubert et al.,

2007). Thus, the weak dependence of the wave amplitudes

on z will be hereinafter assumed.

While the aforementioned neglect of the dependence of

wave amplitudes on z as compared to the sinusoidal verti-

cal variations is a caveat of this wave model extension, it

should be noted that in the limit of no baroclinicity, our

extended model should reduce to the barotropic column

wave model examined in Reasor and Montgomery (2001)

or Schecter and Montgomery (2004) in which the wave

amplitudes are indeed constant with height. Given the fact

that the barotropic vortex model could capture well some

properties of wave dynamics as presented in previous

studies, it is expected that inclusion of the baroclinicity

should not deviate too far from the barotropic wave

solutions, which justifies the assumption of the weak

z-dependence of the wave amplitudes. A more complete

treatment for the vertical variation of the wave amplitudes

is necessary, but the approximation of weak z-dependence

of the wave amplitudes suffices to highlight how the

baroclinicity of the mean vortex alters the general wave

behaviours inside the inner-core of TC-like vortices that

have not been examined in previous studies.

With an expression for U as given by eq. (24) and

the above assumption of weak dependence of the wave

amplitudes with height, one differentiates U with respect to

r to obtain:

dU

dr
¼ �inðX

0

Lr
� XL0

L2r
� X

Lr2
ÞU� iðnX

Lr
þ C0

L
� CL0

L2
ÞU0

� iC

L
U00 þmS0UþmSU0;

(27)

where the prime hereafter denotes derivative with respect

to r. Analysis of eq. (27) for the wave amplitude F will be

significantly reduced if one notes in particular that the

radial gradient of the balanced warm core �Hr is always

coupled with the radial wind U. Because the radial wind

tends to be confined within either the planetary boundary

or the upper-level outflow where the radial gradient of the

warm core anomaly turns out to be negligible (i.e. the warm

core anomaly tends to be maximum at the middle level

where the secondary circulation is mainly vertical), one

can simplify the subsequent derivation by neglecting such

radial coupling. This simplification is appropriate between

the top of the planetary boundary layer and the middle

troposphere (i.e. �850�500 hPa), where the assumptions

of the gradient balanced vortex and small frictional forcing

are most applicable as well. Technically, neglect of such

coupling amounts to setting g�0, and so the parameter

L is reduced to L � X�g� C2 � D. Substitute U, V, W and

dU/dr into eq. (18), we finally have a governing equation

for F as follows:

� i½nX0

Dr
� nXðD0rþDÞ

D2r2
�U� i½C

0

D
þ nX

Dr
� CD0

D2
�U0 � i

C

D
U00

þmS0UþmSU0 þ 1

r
½�inXU

Dr
þmSU� iCU0

D
�

þ in

r
½nCU

Dr
þ �gU0

D
þ i

mSCU

X
� þ ðim� 1

H
Þ mCU

N2 � C2
¼ 0;

(28)

or

U00 þ AðrÞU0 þ BðrÞU ¼ 0; (29)
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where

AðrÞ ¼ nX

Cr
þ C0

C
�D0

D
þ 1

r
� n�g

Cr
þ i

mSD

C

BðrÞ ¼ nX0

Cr
� nX

CDr
D0 � n2

r2
� m2D

N2 � C2

þ i½mDS0

C
þmDS

Cr
�mnDS

Xr
� mD

HðN2 � C2Þ
�

(30)

Once a mean vortex V (r,z) is given, the coefficients A(r),

and B(r) will be known explicitly and we can in principle

integrate eq. (29) to find a solution for F subject to the

restrictions that F(r�0) �F (r��)00 (note that for any

TC-like vortex, �Vðr ¼ 0; zÞ ¼ �Vðr ¼ 1; zÞ ! 0, and so the

same requirement must be applied for the wave perturba-

tions as well). In general, eq. (29) will not possess any

solutions that can be explicitly represented by elementary

functions with an arbitrary initial condition and boundary

constraints. For the simplest situation of an incompressible

barotropic fluid with no stratification, Kelvin obtained a

transcendental equation for F after assuming the Rankine

profile for the inner-core and outer-core regions, and

matching the solution at the RMW r�R. However, for a

typical TC-like vortex, inclusion of the stratification and

baroclinicity leads to a highly complex equation (29) with

no known analytical solutions. In the next section, we

will specifically investigate a limiting case of small radius

within the inner-core of the TC-like vortex. There are

several interesting behaviours of the wave propagation

in this special region of TCs that we can learn from the

above extension of Kelvin’s wave model for which we now

turn into.

2.2. Inner-core approximation

Recall that for a typical TC-like structure, the tangential

flows increase roughly linearly with radius for rBR inside

the TC eye, where R denotes the radius of the maximum

wind. In a sense, this well-established fact reflects the

solid rotation of the TC inner core, which underlines the

wide use of the Rankine vortex model for the inner-core

approximation in the TC research. In this limit of rBR,

one can therefore assume the structure for the mean

tangential wind �V as follows:

�V ¼ aðzÞr 8rBR; (31)

where a(z) indicates the explicit baroclinicity of the

balanced vortex. This approximate Rankine profile for

the mean tangential wind inside the TC eye leads to much

simplification if one notes the following:

X ¼ 2aþ f ; (32)

�g ¼ 2aþ f ; (33)

C ¼ na� x (34)

D ¼ X2 � C2; 8rBR; (35)

and eq. (29) is therefore reduced to

d2U

dr2
þ ð1

r
þ i

mSD

C
Þ dU

dr
þ ðj2 � n2

r2
ÞU ¼ 0; (36)

where the coordinate variable z acts as a parameter, and

j2 � m2D

C2 �N2
þ i½mDS0

C
þmDS

Cr
�mnDS

Xr
þ mD

HðC2 �N2Þ
�:

(37)

Under the simplest approximation of no baroclinicity

and no atmospheric stratification (S�N2�0, H0�),

separation of the real and imaginary part in eq. (37) will

result in a governing equation for F identical to that

obtained in Kelvin’s wave model in the absence of Coriolis

forcing. Formally, solution of eq.(36) can be expressed in

terms of Bessel function as follows:

UrðrÞ ¼ C1JnðjrÞ þ C2YnðjrÞ; (38)

where C1 and C2 are constants, and Jn and Yn are Bessel

functions of types 1 and 2 defined as:

JnðjrÞ ¼
X1

0

ð�1Þm

m!Cðmþ nþ 1Þ
ðjr

2
Þ2mþn

and

YnðjrÞ ¼ JnðjrÞ cosðnpÞ � J�njðrÞ
sinðnpÞ

For purely real k, F is a combination of the Bessel

functions of type 1 and 2, whereas for purely imaginary k,

we have a damped wave-like solution for F with the

modified Bessel function of types 1 and 2. Note however

that unless k is purely real or imaginary, eq. (36) has

no explicit solution for an arbitrary complex value of k. Of

course, one can in principle follow Kelvin’s approach and

match solutions in the outer region (r�R) and the inner

region (rBR), using the Rankine profile or any smooth

function that could ensure �Vinnerðr ¼ RÞ ¼ Vouterðr ¼ RÞ to
arrive at an implicit constraint for each eigenmode. For a

simple cylindrical fluid column, this leads to a transcen-

dental equation that does not have any known solution,

except for limit of low azimuthal wave number and the

RMW is much smaller than the vertical wave length (i.e.

mR�1; see Kelvin, 1880), which is nonetheless not suitable

for TC-like vortices.

Given that k is not a purely real or imaginary number

due to the existence of the atmospheric stratification and

the TC baroclinicity (i.e. terms contain parameters H and

S in eq. (37)), it is difficult to represent solution in terms

of the Bessel functions. Instead of following Kelvin’s

RETROGRADE WAVES IN TC INNER-CORE 5



approach of connecting the inner-core solution to the

outer-core solution, our approach to eq. (36) for the TC-

like vortex is to note that any physical solution within the

inner-core region should approach zero at the vortex

centre. Near r�R where perturbations tend to be largest

due to strong turbulences, any solution inside the vortex

core region should behave as a decaying function with

decreasing radius so that it would quickly decrease to zero

at the vortex centre similar to the characteristics of the

modified Bessel functions of type 2. We take advantage

of this decaying property and impose an approximation for

the inner-core solution around r�R as follows:

UðrÞ ¼ Ke�kðr�RÞ; (39)

where L is any real amplitude, and kB0 is a real number

representing inverse of the radial scale of any wave-like

perturbations. As will be seen below, this exponential

approximation for F imposes a constraint on the amplitude

of any perturbations that are confined near R and

asymptotically damped inside the TC eye as r00. Upon

substituting (39) into eq. (36) and separate the real and

imaginary part of eq. (36), we have:

k2 � k

R
þm2ðX2 � C2Þ

C2 �N2
� n2

R2
¼ 0 (40)

mD½ 1

HðC2 �N2Þ
þ S0

C
þ S

Cr
� nS

Xr
� Sk

C
� ¼ 0: (41)

Note that by convention, k, m, and n are positive wave

number so that v can take either�or� sign, depending on

the propagation direction of waves. Because eq. (41) has to

be true 8n;m, and D"0 to ensure the validity of eq. (28),

the most general condition satisfying eq. (41) is:

1

HðC2 �N2Þ
þ S0

C
þ S

Cr
� nS

Xr
� Sk

C
¼ 0: (42)

Recall the definition of Sðr; zÞ � � da
dz

rXC
DðN2�C2Þ and

D�V2�G2, eq. (42) can be written more explicitly as:

1

H
þ da

dz

2X

D
� da

dz

nC

D
� da

dz

kRX

D
¼ 0; (43)

or

C2 þ a0nHC� 2XHa0 � X2 þ kRXa0H ¼ 0; (44)

where a?�da/dz measures the baroclinicity of a TC-like

vortex. Solution of the quadratic eq. (44) is:

C ¼ � nHa0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnHa0Þ2 þ 4ðX2 þ 2XHa0 � kRXa0HÞ

q

2
;

which results in the following dispersion relationship:

x� ¼ nðaþHa0

2
Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnHa0Þ2 þ 4ðX2 þ 2XHa0 � kRXa0HÞ

q

2
:

To understand the physical meaning of this dispersion

relationship, consider a typical baroclinic approximation in

which the mean tangential wind decreases from a maximum

value near the surface �V ¼ Vs at z�0 to roughly �V ¼ 0 at

z�2H such that a?��Vs/(2RH)��as/(2H).1 This esti-

mation of a? is somewhat larger than the actual change of

the tangential wind with height in the inner-core region,

because the tangential wind tends to maintain well its

cyclonic motion from 900 hPa to about 500 hPa before it

rapidly decreases to zero near the tropopause. However,

this estimation suffices to highlight the impacts of the

barolinicity on the inner-core waves as will be shown

below. Given such an estimation for a?, the dispersion

relationship (45) reduces to:

x� ¼ nða� as

4
Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnasÞ

2

16
þ ð2aþ f Þð2aþ f � as þ

kRas

2
Þ

s

:

(46)

It is evident from the dispersion relationship (46) that the

TC baroclinicity imposes some restricted conditions on the

wave frequency with behaviours that are different from

Kelvin’s wave model. Notice first from eq. (46) that there

exist two different wavemodes corresponding to the plus

and the minus sign for any azimuthal wavenumber n. In

general, the higher the azimuthal wavenumber n is, the

faster the waves will propagate. Depending on the relative

magnitude of each term under the square root of eq. (46),

the inner-core waves can propagate either cyclonically or

anticyclonically relative to the Earth surface. Of particular

interest is that because of the baroclinicity of the balanced

vortex, a will vary with z with the largest value as near the

surface, and it decreases to roughly zero near the tropo-

pause. Therefore, the wave frequency v9 will vary at

different levels, albeit the degree of variation has to be con-

sistent with the approximation of the weak z-dependence of

the wave amplitudes in the baroclinic limit as discussed in

Section 2. In this regard, the coordinate variable z is acting

as a parameter so that the dispersion relationship varies

with height, depending on the vortex strength at each level.

1Note that the log-pressure coordinate is defined with H ¼ R �T=g,

where �T is the globally average temperature. Given �T � 280 K ;

H � 7:5 km, which is half of the tropospheric depth.
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Physically, the dispersion relationship (46) represents a

type of oscillation that is very specific to the inner-core

dynamics of TCs. The nature of such an oscillation can

be most clearly seen if one recalls that, in the absence of

frictional forcing, the main balance near the TC eyewall is

dominantly the gradient wind balance. Assume that a small

perturbation is triggered that causes an air parcel to move

inward. This slight inward deviation of the parcel from its

gradient wind equilibrium will increase its tangential wind

due to the conservation of the absolute angular momen-

tum, thus increasing the centrifugal force and consequently

pushing the parcel back to its equilibrium. Likewise, if

the parcel is pulled outward, the reduced centrifugal

force will lead to dominance of the inward pressure

gradient, and the parcel is pushed back again to its balance

position. This kind of oscillation is inherent to the gradient

wind balance and can be applied for both barotropic

and baroclinic vortices (see Appendix for derivations

of the inner-core oscillation for barotropic vortices).

Although the baroclinicity could significantly modify

the frequency of this inner-core oscillation as seen in eq.

(46), the basic restoring force is still the imbalance between

the pressure gradient force and the centrifugal force.

Such similar nature of the restoring force in the baroclinic

vortices can be verified directly from the dispersion

relationship (46) by simply setting a?�0, which will reduce

to the same mode of inner-core oscillation shown in

Appendix.

To more quantitatively see how the TC baroclinicity

plays a role in the dispersion relationship (46), Fig. 1 shows

the dependence of v9 on a for the first five azimuthal

wavenumbers n�1,. . .,5, assuming that the maximum

tangential wind is 70ms�1 for a typical Category-5 vortex

with R�30 km at the surface and decreases to zero at

z�2H. We will assume further that the wave radial scale is

sufficiently significant such as kR�1 under the square root

of (46). This latter condition, which is reasonable for small

n, is to ensure that the inner-core waves have noticeable

radial scale instead of too small structure. For large

wavenumbers n, k turns out to be proportional to n (see

eq. (47) below), and the inner-core waves therefore become

unstable (i.e. existence of imaginary roots in (46)) such that

inner-core waves will quickly grow and deform. Thus, the

condition kR�1 is most applicable to small azimuthal

wavenumbers n. Note again that because of the restriction

of the waves in the free atmosphere, our subsequent wave

analyses will be limited hereinafter only within a layer from

850 to 500 hPa, and may not be applicable in other parts of

the troposphere (see the shaded parts in Fig. 1).

It is seen in Fig. 1 that although v� consistently shows a

positive value with faster propagation speed for higher

wavenumber n, v� displays much different behaviours.

Specifically, the wavenumber n�1 has v�B0 (i.e. retro-

grade propagation), the wavenumber 2 possesses v�:0,

and all other higher wavenumbers havev��0. In addition,

the retrogrademode for n�1 ismost apparent at lower levels
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Fig. 1. Dependence of the wave frequency v� (solid lines) and v� (dashed lines) on the angular velocity parameter a for the azimuthal

wavenumbers 1, 2, 3, 4, 5 as given by eq. (46), assuming the Coriolis parameter f�10�4 s�1, the maximum 10m wind of 70ms�1, the
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Both v9 and a are normalised by as.
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because of the stronger dependence of the square root on a in

eq. (46). This suggests that one should look for retrograde

waves at the lowest level for the azimuthal wavenumber 1, or

atmostwavenumber n�2.Note here the importance of both

the baroclinicity (da/dz)B0) and the atmospheric stratifica-

tion H in determining the retrograde wave mode. Had

H0� and da/dz�0, eq. (41) would be identically equal to

zero, and so one is left with the undetermined eq. (40).

Apparently, such unique dependence of the wave frequency

on the baroclinicity and the wavenumber mode is not seen in

Kelvin’s wave model due to Kelvin’s assumption of R�H

and constant a with height.

It is of further significance that the relationship (46)

imposes a specific condition on the radial scale of the

inner-core perturbations. Indeed, substituting the disper-

sion relationship (46) into eq. (40) results in the following

constraint:

k ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðn2 � Dm2R2

C2�N2Þ
q

2R
; (47)

where the �sign is chosen in eq. (43) to ensure that the

expansion (39) will correspond to a decreasing function

of r within the inner-core region (i.e. kB0; 8rBR). Such

� sign selection can be seen by noting that the larger value

of n results in a larger G, and so DB0, and k can be

negative only with the minus sign in (47).

Because of the condition (47), a larger azimuthal

wavenumber would correspond to a smaller radial scale

(i.e. 1/k�R/n) according to eq. (47). This implies that the

faster waves corresponding to the higher wavenumber n

will tend to have a smaller radial scale and they are mostly

confined around R. For example, with azimuthal waves

n�5, 1/k�R/5 and so the azimuthal wavenumber 5 would

have quite small radial extend. Assume a typical RMW

R�30 km, this indicates that any numerical simulation

should have a horizontal resolution dx56 km so that the

model could capture the existence of the wavenumber 5.

Because of this constraint, simulations of wave-like propa-

gation in the TC inner-core region need to have sufficiently

high horizontal resolution to capture these high wavenum-

bers. Due to the dispersion relationship (46), it should be

emphasised that the higher azimuthal wavenumbers may

result in negative values under the squared root of (46) and

allow for instabilities to develop, which are however out-

side the scope of wave propagation analyses in this study.

Thus far, the above wave analyses are applied only for

waves inside the TC eye in the absence of both diabatic

heating and frictional forcing. In practice, the propagation

of inner-core waves is greatly interfered by moist processes

in the eyewall, and propagation of adiabatic waves should

be therefore limited within a short time window so that the

adiabatic assumption can be applied. In the next section,

we will examine in details some selected periods in a cloud-

resolving numerical simulation of an idealised vortex in

which episodes of retrograde waves are captured.

3. Numerical experiments

3.1. Experiment description

To examine potential existence of retrograde waves and their

propagation inside the TC eye as obtained from the exten-

sion of Kelvin’s wave model in Section 2, a high-resolution

numerical simulation was carried out, using the latest

version of the HWRF Tallapragada et al. (2014). This is a

customised versionof theWeatherResearch andForecasting-

Nonhydrostatic Mesoscale Model (WRF-NMM, Version

3.6) that is specifically aimed to operational TC forecasts and

is currently maintained and operated in real-time by the US

National Centers for Environmental Prediction.

The idealised configuration in this study was similar to

that used in Gopalakrishnan et al. (2013) and Kieu et al.

(2013) with triple nested domains on an f-plane located

at 12.58N. The model was initialised with a weak vortex

that had the maximum azimuthal wind of 20ms�1 at the

surface and the RMW of 90 km in a quiescent environment.

Unlike idealised configurations in the previous studies with

43 vertical levels, the simulation in this study had 61

vertical levels with a model top at 2 hPa instead of 50 hPa,

and the three domains were configured at much higher

horizontal resolution of �8.1 km, 2.7 km, and 900m. Such

ultra-high horizontal resolution was used to allow for

better resolved wave-like features inside the vortex centre.

As discussed in the previous section, the approximation

(39) for radially damped wave amplitudes would corre-

spond to a smaller radial scale for higher azimuthal

wavenumbers as given by eq. (47). Therefore, high resolu-

tion simulations are necessary to capture the wave propa-

gation inside the vortex core. In addition to these changes,

the sea surface temperature in this idealised configuration is

set at 303.5K instead of 302K such that the simulated

vortex can approach a higher maximum potential intensity

limit. This is to ensure that the inner-core wave structure

can be exposed more clearly, and the related linearisation

can be best applied. Mote details about all other model

physics configurations can be found in Bao et al. (2012)

and Gopalakrishnan et al. (2013).

Before presenting analyses of retrograde waves, a number

of remarks about potential difficulties with investigation

of wave propagation in full-physics idealised simulations

should bementioned. First, the vortex development in a full-

physics model never settles down to an absolute stationary

state even if there exists a stable point (Kieu 2015) or a boun-

ded maximum intensity attractor as pointed out recently in

Kieu and Moon (2016). This is because three-dimensional
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models like the HWRF model are limited-area regional

models that are heavily influenced by boundary conditions

after some period of time. Hence, the requirement of a mean

balanced vortex to be in an absolute steady state for the

linearisation and the eigenmode expansion in Section 2.1 can

never be fully satisfied. To ensure that this stationary

requirement of the mean balance vortex is satisfied as

much as possible, all wave analyses in this Section are

carried out only for short time windows after 72 h into

integration during which the model vortex is roughly in the

stationary state (see Fig. 2a).

The second issue with vortex simulations is that at

the ultra-high horizontal resolution limit, the vortex centre

is no longer uniquely defined, but constantly wobbling due

to frequent emergence and disappearance of convective-

scale anomalies and associated abnormally high vorticity

centres. As a result, the storm centre based on either the

minimum central pressure or the surface wind speed varies

quickly from level to level and from time to time. Because of

this strong variation in the storm centre, the wave decom-

position around a storm centre often shows sudden changes

in the wave structure during the wave evolution, and varies
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significantly at different vertical levels. This variation of

the vortex centre makes it hard to track the evolution of

waves continuously. In this study, the issue of the vortex

centre fluctuation from the model high-frequency output is

minimised by using a mass-weighted pressure distribution

within a layer of 900�700 hPa to filter out all small-scale

noises. In addition, the vortex centre is detected at every time

step to avoid asymmetries caused by the wobbling of the

vortex centre.

Along with the above difficulties, we should mention

that full-physics models always contain moist processes by

which deep convection constantly develops near the eyewall

due to strong low level convergence. Even though the

eye region is almost void of deep convection, new episodes

of wave generation trigged near the eyewall region could

produce strong impacts on subsequent propagation of

waves inside the eye that neither the Kelvin’s model nor

the extension presented in Section 2 could take into

account. Therefore, wave propagation inside the vortex

eye can experience abrupt change, and it is hard to capture

the full propagation of the inner-core waves continuously.

Given those issues with full-physics simulations, our wave

analysis in this section will be confined only within specific

ad-hoc windows during which the retrograde propagation

can be captured most evidently.

3.2. Results

Analyses in Section 2.2 suggest several important points

about retrograde waves including (1) the retrograde waves

should exist only for wavenumber 1 or at most wavenum-

ber 2, (2) these waves are mostly realised between the

middle level and the top of the planetary boundary layer

where the mean balanced vortex is well approximated by

the gradient wind balance, (3) the propagation speed of the

retrograde waves is faster at lower levels, and (4) the wave

amplitudes have to decay from the RMW inward such that

the dispersion relationship (46) is valid. With these

constraints, Fig. 2b shows the amplitudes of five azimuthal

wavenumbers n�1,. . .,5 obtained from Fourier decompo-

sition of the geopotential height perturbation F(r) valid at

72-h into integration. The inner-core wave amplitudes

indeed decrease quickly with radius away from the RMW

as an decaying function, with most of the wave projections

on the azimuthal wavenumber 1, 2, and 3, and smaller

projections onto the higher wavenumbers. This inward

decrease of the wave amplitudes with radius to a good

extent justifies the approximation (39) upon which the

retrograde waves are derived.

Given the above conditions for the existence of retro-

grade waves, Fig. 3 shows evolution of the azimuthal

wavenumber n�1 obtained from the Fourier wave decom-

positions of F(r) after 72-h into integration at z�750 hPa

inside the vortex core region. Because no retrograde waves

are observed for higher wavenumbers n]3, evolution of

these higher wavenumbers is not provided herein. One

notices in Fig. 3 the first evidence of the existence of the

retrograde waves from minute 73 to minute 90 (with respect

to the reference time origin at 72-h), which are all well

confined near the vicinity of the RMW. Although it is

difficult to find a time window that captures a full cycle of

the retrograde wave propagation, estimation of the propa-

gation speed in Fig. 3 shows that the wave propagates with

a period of �20 min, or equivalently v:5�10�3 s�1.

Our examination of many other time windows showed that

this anticyclonic propagation of the wavenumber 1 pertur-

bation turns out to be a dominant mode at the vortex

mature stage, albeit the full cycle of such wave propagation

is not always apparent.

With the maximum surface wind of 61ms�1 at the

RMW of 30 km, the Rankine parameter at the surface as:

2.0�10�3 s�1. This gives rise to a ratio v/as:2.5, which is

higher than the theoretical ratio v/as:1 seen in Fig. 1. Such

discrepancy in the wave frequency between the extended

model presented in Section 2 and the numerical simulation

could be related to various oversimplifications employed

in the extended wave model or unknown nonlinear inter-

action among different wavemodes that the linearisation

in Section 2 may not be applied. However, the fact the

HWRF simulation could capture this retrograde mode is

interesting, as it indicates that the inner-core region of TCs

could in fact support such a retrograde wave mode, which

to our knowledge has not been previously demonstrated.

While the retrograde wave mode is seen dominantly for

wavenumber 1 for most time windows after the vortex

attains its quasi-stationary stage, the fact that there exists

two different wave propagating directions for each azi-

muthal wavenumber as implied by eq. (46) makes the wave

analysis a bit more involved, because it is not known in

advance what directions a wave will propagate. Unlike a

perturbation of an arbitrary shape that can split into

two smaller perturbations, each propagating in its own

direction, the propagation of a sinusoidal eigenmode needs

to ensure that the harmonic characteristics are well

maintained, that is, wavenumber 1 has to be the same

wavenumber 1 with time. From this physical perspective,

the eigenmode perturbation at each instant of time can,

therefore, travel in only one direction, which is determined

by initial conditions. If both directions are allowed for the

wavenumber 1, then one should expect to see realisation of

cyclonic propagation of the wavenumber 1 at some other

time windows as well.

Indeed, Fig. 4 shows a similar time evolution of the

wavenumber 1 perturbation as in Fig. 3, but for a different

time window in which the cyclonic propagation of the

wavenumber 1 is observed. One notices that this cyclonic
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wave propagation also has similar frequency as the retro-

grade mode with v/as:1.8, which is again higher than

the theoretical value of 1.2 seen in Fig. 1. Similar to the

retrograde mode, we note that it is rare to observe a

complete propagation of the cyclonic waves in our experi-

ment. Most often, a wave propagates in one direction for

about more than half of the cycle, and it suddenly changes

its propagating direction for 5�10 min before resuming its

previous propagation direction. This process alternatives

every 20�30 min, with the overall dominance of the

retrograde mode. In this regard, the existence of both the

retrograde and the cyclonic propagating waves confirms

the consistency of the wave analyses in Section 2.

Regarding the wavenumber 2, the dispersion relation-

ship displayed in Fig. 1 shows that there are also two

wave modes that propagate in opposite directions similar
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Fig. 3. Evolution of azimuthal wavenumber 1 geopotential height perturbation f?(r,l,z,t) (shaded) at 750 hPa from minute 73 to 90

relative to the time origin 72-h into integration (dashed line in Fig. 2a) in a 5-day simulation of an idealised vortex, using the HWRF model.

All perturbations are normalised by the wave amplitude F(r�R) at each corresponding time. The time stamp denotes the minutes relative

to the 72-h reference. Red circle denotes the RMW R at each instant of time, and vectors denote the mean tangential wind.
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to the wavenumber 1. However, the retrograde mode for

the wavenumber 2 has too slow a speed that it is not

likely that this retrograde mode can be realised in

model simulations (the ratio v/as for the wavenumber 2

retrograde between level 500 hPa and 850 hPa is �0.1 as

seen from the dashed red curve in Fig. 1). Indeed, our

examination of the propagation of the wavenumber 2 does

not capture evidence of the retrograde mode for the

wavenumber 2 in all analyses. Instead, the wave propaga-

tion is dominantly cyclonic in most time windows.

Figure 5 shows an example of evolution of the wavenum-

ber 2 between minute 10 and 50 after 72 h into integration,

which captures a full cyclonic propagation of the wavenum-

ber 2 with period of �30min. This wave period corresponds

to the ratio v/as:1.1, which is again different from the

theoretical value of 2.2 as seen in Fig. 1. As a matter of

fact, our probing of many different time windows shows that

the wavenumber 2 cyclonic propagation is dominant and

consistent at all time windows. Similar consistency is also

seen for higher wavenumbers n]2; all show persistent
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Fig. 4. Similar to Fig. 3 but for different time window that exhibits the cyclonic propagation of the wavenumber 1.
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cyclonic propagation every time window (not shown).

Unlike the wavenumber 1 that experiences abrupt changes

in the propagating direction after some period of time,

the cyclonic propagation is very smooth for n]2 with no

sudden change in the wave amplitudes or the direction

during the entire course of propagation.

Despite some discrepancies in the exact values of the

wave propagation speed between the extended wave model

presented in Section 2 and the full-physics simulations,

both the existence of the wavenumber 1 retrograde mode

and the qualitative consistency in the propagation of the

higher wavenumbers between the analytical model and the

full-physics simulation give us confidence in the applic-

ability of our extension of the Kelvin’s wave model for the

TC inner-core region.

4. Discussion and conclusion

In this study, the Kelvin’s vortex wave model was extended

for TC-like vortices to examine propagations of wave-like

perturbations inside the TC inner-core region. It was found

that the TC intrinsic baroclinicity and the atmospheric
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Fig. 5. Similar to Fig. 3 but for the wavenumber 2 from minute 10 to minute 50.
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stratification introduce a strong constraint on the wave

propagation inside the TC core, which is governed by a

more involved dispersion relationship than the one that

was obtained by Kelvin (1880) for a fluid column vortex

whose aspect ratio is much larger than unity. By applying

the Rankine-structure for the TC inner-core region, it was

demonstrated that there exists unique simplification for which

the inner-core wave eigenmodes can be described by a

tractable dispersion relationship. Examination of this inner-

core dispersion relationship showed that there are two dif-

ferent propagation modes for every azimuthal wavenumber.

In particular, the azimuthal wavenumber n�1 possesses

an intriguing retrograde mode associated with the strong

baroclinicity of TCs, which is absent for all other higher

wavenumbers n]2. While this wavenumber 1 retrograde

mode appears to be similar to the retrograde mode obtained

in Kelvin’s fluid column model, the retrograde mode in our

extended model depends critically on the TC baroclinicity

that Kelvin’s model could not contain.

A numerical simulation of a TC-like vortex at an ultra-

high horizontal resolution (900m) using the full-physics

HWRF model was conducted to look for such a particular

retrograde wave mode. Decomposition of the TC inner-

core wave spectrum at the quasi-stationary stage of the

model vortex revealed that the retrograde wave mode

is indeed realised for the azimuthal wavenumber 1 inside

the core of the vortex. Furthermore, the propagation of

simulated inner-core waves is qualitatively consistent with

the analyses in our extended wave model, albeit the model

simulated propagation speed is somewhat faster than what

obtained in the extended wave model. Direct estimation

of the retrograde wave propagation from the model

high frequency output suggested that the period of the

retrograde wavenumber 1 is �20min, and similarly for the

cyclonic mode. The existence of both the retrograde and

the cyclonic modes in this sense confirms the consistency of

the wave analyses in our extended wave model for TC-like

vortices. Despite the brief existence of this retrograde mode

in the HWRF idealised simulations due to unaccounted

strong wave coupling and moist processes, the emergence

of such a retrograde wave mode is of significance, because

they are potentially connected to the eyewall perturbations

that account for different TC eye shape and instability,

and possible formation of mesovortices associated with the

eyewall instabilities.
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6. Appendix

A.1. Ring oscillation of the tropical cyclone inner core

The nature of the restoring force for the inner-core waves

as obtained in eq. (46) can be most clearly seen by

considering a mode of ring oscillation around the gradient

wind balance for the core of a tropical cyclone (TC)-like

vortex. Re-call the horizontal momentum equations:

ut þ uur þ
v

r
uk þ wuz �

v2

r
¼ �/r þ fv (A1)

vt þ uvr þ
v

r
vk þ wvz þ

uv

r
¼ � 1

r
/k � fu; (A2)

and assume that the mean states �UðrÞ; �VðrÞ; �W ðrÞ are in the

gradient wind balance with a given geopotential distribu-

tion �UðrÞ at a given radius of maximum wind R as follows:

�
�V

2

R
¼ � �/r þ f �V (A3)

�U ¼ 0 (A4)

�W ¼ 0: (A5)

Linearisation of eqs. (A1)�(A2) around the mean

states (A3)�(A5) as u ¼ u0; v ¼ �V þ v0;w ¼ w0 results in a

set of linearised equations:

u0t �
2 �Vv0

R
¼ fv0 (A6)

v0t þ u0
d �VðrÞ

dr
þ

�V

R
u0 ¼ �fu0; (A7)

where the balance relationships (A3)�(A4) have been used

in the above linearisation, and the ring oscillation mode

has been assumed such that @u?/@l�@v?/@l�0. Notice

that for the inner-core of a TC-like vortex, �VðrÞ � ar such

that d �VðrÞ
dr
¼ �V

R
¼ a, eqs. (A6)�(A7) are reduced to

u0t ¼ Xv0 (A8)

v0t ¼ �Xu0; where X � 2aþ f : (A9)

Combination of the above equations immediately shows

that the TC inner core oscillates in the ring mode (i.e. no

azimuthal dependence) at a frequency of 9V, which is

identical to the dispersion relationship (46) when n�0

and da/dz�0. Intuitively, this ring oscillation mode can be

understood by imaginingwhat would happen if one squeezes

the TC inner-core radially a little bit inward. Because

of the conservation of the absolute angular momentum,

the tangential wind will increase and result in a stronger

14 C. KIEU



centrifugal force against the squeezing direction, thus

pushing the inner core back to its original position. Likewise,

if one pulls the inner core outward, the tangential wind

will be reduced because of the conservation of the angular

momentum again. As such, the pressure gradient force will

dominate the reduced centrifugal force, and the inner core

will therefore try to return to its original balance. Much like

an inviscid water drop of mass m and surface tension s will

have an internal frequency �
ffiffiffiffiffiffiffiffiffi
r=m

p
, the inner core of a TC

characterised by the RMW R and the maximum tangential

wind V will experience a inherent frequency of V�V/R.

From this perspective, the stiffness of the TC core demon-

strates the nature of the inner-core oscillation under the

gradient wind balance constraint (A3), which can be applied

to both barotropic and baroclinic vortices. Of course,

the baroclinicity modifies substantially the dispersion rela-

tionship as seen in Section 2.2, but the general physical

mechanism behind such oscillation is intrinsically related

to the ‘elasticity’ of the inner-core region of TC-like vortices

as discussed in the main text.
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